skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Syed Ahmad Chan Bukhari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Villazón-Terrazas, B. (Ed.)
    Given the ubiquity of unstructured biomedical data, significant obstacles still remain in achieving accurate and fast access to online biomedical content. Accompanying semantic annotations with a growing volume biomedical content on the internet is critical to enhancing search engines’ context-aware indexing, improving search speed and retrieval accuracy. We propose a novel methodology for annotation recommendation in the biomedical content authoring environment by introducing the socio-technical approach where users can get recommendations from each other for accurate and high quality semantic annotations. We performed experiments to record the system level performance with and without socio-technical features in three scenarios of different context to evaluate the proposed socio-technical approach. At a system level, we achieved 89.98% precision, 89.61% recall, and an 89.45% F1-score for semantic annotation recollection. Similarly, a high accuracy of 90% is achieved with the socio-technical approach compared to without, which obtains 73% accuracy. However almost equable precision, recall, and F1- score of 90% is gained by scenario-1 and scenario-2, whereas scenario-3 achieved relatively less precision, recall and F1-score of 88%. We conclude that our proposed socio-technical approach produces proficient annotation recommendations that could be helpful for various uses ranging from context-aware indexing to retrieval accuracy. 
    more » « less